Geoinformatics Unit

Paper accepted for publication in IEEE IEEE TCYB

August 15, 2019

Our paper entitled "Hyperspectral Image Restoration Using Weighted Group Sparsity Regularized Low-Rank Tensor Decomposition" written by Yong Chen, Wei He, Naoto Yokoya, and Ting-Zhu Huang has been accepted for publication in IEEE Transactions on Cybernetics (TCYB).

Mixed noise (such as Gaussian, impulse, stripe, and deadline noises) contamination is a common phenomenon in hyperspectral imagery (HSI), greatly degrading visual quality and affecting subsequent processing accuracy. By encoding sparse prior to the spatial or spectral difference images, total variation (TV) regularization is an efficient tool for removing the noises. However, the previous TV term cannot maintain the shared group sparsity pattern of the spatial difference images of different spectral bands. To address this issue, this study proposes a group sparsity regularization of the spatial difference images for HSI restoration. Instead of using L1 or L2-norm (sparsity) on the difference image itself, we introduce a weighted L2,1-norm to constrain the spatial difference image cube, efficiently exploring the shared group sparse pattern. Moreover, we employ the well-known low-rank Tucker decomposition to capture the global spatial-spectral correlation from three HSI dimensions. To summarize, a weighted group sparsity regularized low-rank tensor decomposition (LRTDGS) method is presented for HSI restoration. An efficient augmented Lagrange multiplier algorithm is employed to solve the LRTDGS model. The superiority of this method for HSI restoration is demonstrated by a series of experimental results from both simulated and real data, as compared to other state-of-the-art TV regularized low-rank matrix/tensor decomposition methods.